Search results for "Air showers"

showing 10 items of 31 documents

Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

2011

Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the obser…

Point spread functionNuclear and High Energy PhysicsCosmic Rays Gamma Astronomy Extended Air ShowersAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodCosmic rayAstrophysics01 natural sciencesStandard deviationPhysics::GeophysicsRaggi cosmiciSettore FIS/05 - Astronomia E Astrofisicageomagnetic field0103 physical sciences010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsOmbra della lunaApparati di sciameDetectorSettore FIS/01 - Fisica SperimentaleMoon shadowAstronomyCosmic rayMagnetic fieldEarth's magnetic fieldAir shower13. Climate actionPhysics::Space Physics
researchProduct

EUSO-A Space mission searching for Extreme Energy Cosmic Rays and neutrinos

2004

The “Extreme Universe Space Observatory – EUSO” is an international, multi-agency mission, led by ESA, aimed at measuring from a Low Altitude Earth Orbiting Space Platform the flux and investigating the nature and origin of the charged and neutral particles of the Extreme Energy Cosmic Ray (EECR) with energy above the conventional value (E = 5×10 19 eV) of the Greisen Zatsepin and Kuzmin (GZK) effect E GZK = 5×10 19 eV). EUSO will pioneer the observation from Space of EECR-induced Extensive Air Showers (EASs), making measurements of the primary energy, arrival direction and possibly composition of the incoming flux by using a sensitive area and target volume far greater than achievable from…

PhysicsNuclear and High Energy PhysicsPrimary energyAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectultra high energy cosmic rays extended air showers international space stationAstrophysics::Instrumentation and Methods for AstrophysicsPlanning target volumeAstronomyFluxCosmic rayAstrophysicsSpace (mathematics)Atomic and Molecular Physics and OpticsUniversePhysics::Space PhysicsNeutrinoEnergy (signal processing)media_common
researchProduct

Calibration of the RPC charge readout in the ARGO-YBJ experiment

2012

""The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4\\\/m^2, enabling the study of the primary cosmic rays with energies in the ''knee'' region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle de…

Optical telescopesNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCamere a Piastre Resistive (RPC)Resistive plate chamberAstrophysics::High Energy Astrophysical PhenomenaCosmic raylaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticslawCoincidentAir showersCalibrationSea levelInstrumentationParticle densitiesCosmic raysResistive Plate Chambers Charge read-out Extended Air ShowersPhysicsAir showers Charge readout Dynamic range Knee regions Particle densities Resistive plate chambers; Calibration Charged particles Cosmic rays Experiments Optical telescopes Sea level Telescopes; Particle spectrometersResistive touchscreenScintillationDynamic rangeCharge readoutParticle spectrometersbusiness.industryCharged particlesSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsCharged particleAir showerCalibrazione della Risposta Analogica di RPCKnee regionsLettura Analogica di RPCCalibrationResistive plate chambersbusinessExperimentsTelescopes
researchProduct

Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

2010

In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-1…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsBL Lacertae objectSettore FIS/05 - Astronomia E AstrofisicaExtended Air showersSettore FIS/05 - Astronomia e Astrofisicageneral" ["gamma rays]BlazarBL Lacertae objects; Markarian 421; gamma rays; Extended Air showersCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpectral indexindividual (Markarian 421)" ["BL Lacertae objects]Markarian 421Settore FIS/01 - Fisica SperimentaleGamma rayindividual (Markarian 421) - gamma rays: observations [BL Lacertae objects]Astronomy and AstrophysicsAir showerCrab NebulaSpace and Planetary Sciencegamma rayIntergalactic travelAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Software Timing Calibration of the ARGO-YBJ Detector

2009

The ARGO-YBJ experiment is mainly devoted to search for astronomical gamma sources. The arrival direction of air showers is reconstructed thanks to the times measured by the pixels of the detector. Therefore, the timing calibration of the detector pixels is crucial in order to get the best angular resolution and pointing accuracy. Because of the large number of pixels a hardware timing calibration is practically impossible. Therefore an off-line software calibration has been adopted. Here, the details of the procedure and the results are presented. (C) 2008 Elsevier B.V. All rights reserved.

PhysicsPixelCalibration (statistics)business.industryPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorSettore FIS/01 - Fisica SperimentaleComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsAstronomia gammaGamma Astronomy Timing Calibration Extensive Air ShowersSciami estesiCalibrazione temporaleOpticsSoftwareRaggi cosmiciSettore FIS/05 - Astronomia e AstrofisicaAngular resolutionbusinessArgoRemote sensing
researchProduct

A multiscale method for gamma/h discrimination in extensive air showers

2011

We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. The separation technique is particularly suited for being applied when the topology of the particle distribution in the shower front is as largely detailed as possible. Here, our method is discussed and applied to a set of fully simulated vertical showers in the experimental framework of ARGO-YBJ, taking advantage of both the space and time distribution of the detected sec…

Wavelet MethodNeural NetworksCosmic Rays; Extensive Air Showers; Multiscale Analysis; Wavelet Methods; Neural NetworksMultiscale AnalysiSettore FIS/01 - Fisica SperimentaleExtensive Air ShowerCosmic Ray
researchProduct

Identifying clouds over the Pierre Auger Observatory using infrared satellite data

2013

We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Atmospheric MonitoringSatellitesInfraredAstronomyCloud coverFOS: Physical sciencesAtmospheric monitoring01 natural sciencesCiencias de la Tierra y relacionadas con el Medio AmbienteAuger//purl.org/becyt/ford/1 [https]//purl.org/becyt/ford/1.5 [https]ObservatoryClouds0103 physical sciencesExtensive air showers010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionCiencias ExactasPhysicsPierre Auger ObservatoryUHE Cosmic Rays atmosphere010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomyPierre Auger ObservatoryAstronomy and AstrophysicsUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]INFRAVERMELHOExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPierre Auger observatoryultra-high energy cosmic rays; Pierre Auger Observatory; extensive air showers; atmospheric monitoring; clouds; satellitesFísica nuclearSatelliteCentral Laser FacilityExtensive Air ShowersAstrophysics - Instrumentation and Methods for AstrophysicsMeteorología y Ciencias AtmosféricasSYSTEMCIENCIAS NATURALES Y EXACTASAstroparticle Physics
researchProduct

Light-component spectrum of the primary cosmic rays in the multi-TeV region measured by the ARGO-YBJ experiment

2012

The ARGO-YBJ experiment detects extensive air showers in a wide energy range by means of a full-coverage detector which is in stable data taking in its full configuration since November 2007 at the YBJ International Cosmic Ray Observatory (4300 m a.s.l., Tibet, People's Republic of China). In this paper the measurement of the light-component spectrum of primary cosmic rays in the energy region $(5\textdiv{}200)\text{ }\text{ }\mathrm{TeV}$ is reported. The method exploited to analyze the experimental data is based on a Bayesian procedure. The measured intensities of the light component are consistent with the recent CREAM results and higher than that obtained adding the proton and helium sp…

Extended Air Showers Cosmic Rays Gamma Ray sourcesNuclear and High Energy PhysicsProtonTIBETAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerchemistry.chemical_elementCosmic rayHELIUM SPECTRAAstrophysicsPROTONBayesian methodCASCADESSpectral lineSettore FIS/05 - Astronomia E AstrofisicaNuclear magnetic resonanceCosmic-ray observatoryHeliumPhysicsRange (particle radiation)ENERGY-RANGEBALLOON EXPERIMENTNUCLEISettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for Astrophysicslight component spectrumchemistryEnergy (signal processing)SYSTEM
researchProduct

Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

2011

The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.

Solar SystemField (physics)media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmagnetic fieldCosmic rayHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Settore FIS/05 - Astronomia E AstrofisicaShadowAstrophysics::Solar and Stellar AstrophysicsInterplanetary magnetic fieldcosmic raySolar and Stellar Astrophysics (astro-ph.SR)media_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCosmic Rays Gamma Sources Extended Air Showers Solar windMagnetic fieldSolar windAstrophysics - Solar and Stellar Astrophysicssolar windSpace and Planetary ScienceSkyPhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct